Lebedev grid high-order finite-difference modeling and elastic wave-mode separation for TTI media
Huang Jinqiang1, Li Zhenchun1, Huang Jianping1, Zhang Jinmiao2, Sun Wenbo2
1. School of Geosciences, China University of Petroleum(East China), Qingdao, Shandong 266580, China; 2. CNOOC Research Institute, Beijing 100028, China
Abstract:Since conventional staggered grid high-order finite-difference shows low accuracy for forward modeling in TTI media,and elastic wave-mode separation in heterogeneous TTI media is incomplete,we develop an integrated processing workflow of modeling with Lebedev grid high-order finite-difference scheme and elastic wave-mode separation.First,based on the first-order partial derivative elastic wave velocity-stress equations,the TTI medium Lebedev grid high-order finite-difference recurrence formula is constructed.Then low-rank decomposition algorithm is employed to solve space-wavenumber domain separation operator composed of polarized vectors.Finally the operator is used to separate compressional wave or shear wave from velocity components.Thus we achieve the perfect combination of Lebedev grid high-order finite-difference scheme with compressional and shear wave separation,and build an integrated processing workflow of modeling with Lebedev grid high-order finite-difference scheme and elastic wave-mode separation for TTI media.Numerical tests on homogeneous model,layered model and complex BP2007 model demonstrate three advantages of our proposed approach:①Our proposed approach produces high-precision vector wave fields because the interpolation error related to staggered grid strategy can be significantly eliminated by selecting Lebedev grid finite-difference scheme; ②Our proposed approach completely separates elastic wave fields and obtain decoupled qP-and qSV-waves using low-rank decomposition algorithm; ③the proposed approach shows strong adaptability to complex heterogeneous medium.
Igel H,Mora P,Riollet B.Anisotropic wave propagation through finite-difference grids.Geophysics,1995,60(4):1203-1216.
[5]
黄建平,黄金强,李振春等.TTI介质一阶qP波方程交错网格伪谱法正演模拟.石油地球物理勘探,2016,51(3):487-496.Huang Jianping,Huang Jinqiang,Li Zhenchun et al.Staggered grid pseudo-spectral numerical simulation of first-order quasi P-wave equation for TTI media.OGP,2016,51(3):487-496.
[6]
Saenger E H,Gold N,Shapiro S A.Modeling the propagation of elastic waves using a modified finite-difference grid.Wave Motion,2000,31(1):77-92.
[7]
李振春,杨富森,王小丹.基于LS-RSGFD方法优化的横向各向同性(TI)介质一阶qP波高精度数值模拟.地球物理学报,2016,59(4):1477-1490.Li Zhenchun,Yang Fusen,Wang Xiaodan.High-precision numerical simulation of first-order qP-waves in the transversely isotropic (TI) medium optimized by the LS-RSGFD method.Chinese Journal of Geophy-sics,2016,59(4):1477-1490.
[8]
Lisitsa V,Vishnevskiy D.Lebedev scheme for the numerical simulation of wave propagation in 3D anisotropic elasticity.Geophysical Prospecting,2010,58(4):619-635.
[9]
Lisitsa V,Tcheverda V.Numerical simulation of seismic waves in models with anisotropic formations:coupling Virieux and Lebedev finite-difference schemes.Computational Geosciences,2012,16(4):1135-1152.
[10]
李娜,黄建平,李振春等.Lebedev网格改进差分系数TTI介质正演模拟方法研究.地球物理学报,2014,57(1):261-269.Li Na,Huang Jianping,Li Zhenchun et al.The study on numerical simulation method of Lebedev grid with dispersion improvement coefficients in TTI media.Chinese Journal of Geophysics,2014,57(1):261-269.
[11]
李娜,李振春,黄建平等.Lebedev网格与标准交错网格耦合机制下的复杂各向异性正演模拟.石油地球物理勘探,2014,49(1):121-131.Li Na,Li Zhenchun,Huang Jianping et al.Numerical simulation with coupling Lebedev and standard staggered grid schemes for complex anisotropic media.OGP,2014,49(1):122-131.
[12]
Aki K,Richards P G.Quantitative Seismology.John Wiley & Sons,2009.
[13]
Robert S,Jinder C,Kuang J C.Phase correction in separating P-and S-waves in elastic data.Geophysics,2001,66(5):1515-1518.
[14]
Dellinger J,Etgen J.Wave-type separation in 3-D anisotropic media.SEG Technical Program Expanded Abstracts,1989,8:977-979.
[15]
Dellinger J,Etgen J.Wave field separation in two dimensional anisotropic media.Geophysics,1990,55(7):914-919.
[16]
Yan J,Sava P.3D elastic wave mode separation for TTI media.SEG Technical Program Expanded Abstracts,2009,28:4294-4298.
[17]
Yan J,Sava P.Elastic wave mode separation for TTI media.SEG Technical Program Expanded Abstracts,2009,28:1197-1201.
[18]
Yan J,Sava P.Elastic wave-mode separation for VTI media.Geophysics,2009,74(5):WB19-WB32.
[19]
郭鹏,何兵寿,沈骥千.VTI介质弹性波波场分解的空间域算法.石油地球物理勘探,2013,48(4):567-575.Guo Peng,He Bingshou,Shen Jiqian.Space domain algorithm of elastic wave-field decomposition in VTI media.OGP,2013,48(4):567-575.
[20]
魏石磊,张大洲,李明智等.VTI介质中波场分离算子特征研究.石油地球物理勘探,2016,51(3):512-528.Wei Shilei,Zhang Dazhou,Li Mingzhi et al.Wave field separation operator characteristics in the VTI media.OGP,2016,51(3):512-528.
[21]
Yan J,Sava P.Improving the efficiency of elastic wave-mode separation for heterogeneous tilted transverse isotropic media.Geophysics,2011,76(4):T65-T78.
[22]
Cheng J B,Fomel S.Fast algorithms for elastic-wave-mode separation and vector decomposition using low-rank approximation for anisotropic media.Geophy-sics,2014,79(4):C97-C110.
[23]
Cheng J B,Kang W.Simulating propagation of separated wave modes in general anisotropic media,Part Ⅰ:qP-wave propagators.Geophysics,2014,79(1):C1-C18.
[24]
Liu F,Morton S A,Jiang S et al.Decoupled wave equations for P and SV waves in an acoustic VTI media.SEG Technical Program Expanded Abstracts,2009,28:2844-2848.
[25]
Pestana R C,Ursin B,Stoffa P L.Separate P-and SV-wave equations for VTI media.SEG Technical Program Expanded Abstracts,2011,30:163-167.
[26]
Zhan G,Pestana R C,Stoffa P L.Decoupled equations for reverse time migration in tilted transversely isotropic media.Geophysics,2012,77(2):T37-T45.
[27]
Chu C,Macy B K,Anno P D.Pure acoustic wave propagation in transversely isotropic media by the pseudospectral method.Geophysical Prospecting,2013,61(3):556-567.
[28]
Cheng J B,Wu Z D,Alkhalifah T.Simulating propagation of decomposed elastic waves using low-rank approximate mixed-domain integral operators for heterogeneous transversely isotropic media.SEG Technical Program Expanded Abstracts,2014,33:3393-3399.
[29]
Cheng J B,Kang W.Simulating propagation of separated wave modes in general anisotropic media,Part Ⅱ:qS-wave propagators.Geophysics,2016,81(2):C39-C52.
[30]
Fomel S,Ying L,Song X.Seismic wave extrapolation using lowrank symbol approximation.Geophysical Prospecting,2013,61(3):526-536.